In this post, we are going to take another look at scraping NBA team information from Wikipedia. We will also see how generate a map of NBA arena locations.
Continue reading “Scraping NBA team information from Wikipedia (Revisited)”
Tag: Web Scraping
Web Scraping NBA Team Matchups and Box Scores
We are going to use machine learning and statistics to predict NBA matchups. To do this, we are going to need data on NBA games, and lots of it. So let’s get all the team matchups and box scores from stats.nba.com, and make them ready for use.
This post has two purposes. The first is to show you how to do the actual web scraping. The second purpose is to show you how to examine data before you us it. Data are almost always a bit messy and need to be handled with care. It’s important to take some time to look at data and to make sure it’s clean before use.
Continue reading “Web Scraping NBA Team Matchups and Box Scores”
Introduction to Web Scraping
Any analysis needs to start with data. To do serious sports analytics, we need to figure out how to capture information, assess its quality and put it into a useful format. Fortunately, there is a massive amount of quality sports data available on the internet, which can be your starting point for great analytics.
Continue reading “Introduction to Web Scraping”